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ABSTRACT

In contradistinction to the known theory on complex splines

which are defined on the boundary of a region in , we define

complex planar splines on a region itself as a complex valued

continuous function which is defined piece-wise on suitable meshes

of that region. The main idea is to use non-holomorphic functions

as pieces, since holomorphic pieces would lead to just one holo-

morphic function on the whole region by a well known identity

>_ theorem in the theory of functions in one complex variable.a-
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Some of the techniques used are available from the theory

of finite elements. But also are considered new aspects, namely

mapping properties of a complex planar spline v and the differ-

ence f - v where f is in general a holomorphic function. For

triangular, rectangular, parallelogram meshes and meshes on cir-

cular sectors, explicit expressions are provided and also proper-

ties of the newly introduced complex planar splines are studied.

1. INTRODUCTION

In this paper we are concerned with the approximation of

complex valued functions by functions which we would like to call

complex ptanar splines.

In the current literature (see e.g. Ahlberg [1], Ahlberg-

Nilson-Walsh [2,3,41, Atteia [7, and Schoenberg (12,13]), complex

splines are defined on the boundary of a given region and are then

extended into the interior by Cauchy's integral formula. However,

this extension process is not easy to execute numerically. There-

fore, we offer another approach here which in spirit originates

from the theory of finite elements. (For a comprehensive infor-

mation on this subject, see the references in Schwarz [15]). We

subdivide a given region into meshes and define a complex valued

function on that region piecewise on each mesh. The functions

defined on each individual mesh will be called etements. The

vertices of the occurring meshes will be called gutd point4 and

the set of all grid points a grid.



3.

The minimum requirement we impose is the continuity of that

piecewise defined function. Any such piecewise defined complex

function which is continuous will be called a comptex planat

,spttine.

The continuity already has a very serious implication. If

we would try todefine a complex planar spline by holomorphic

elements like polynomials, then by the well known identity theorem

(e.g. Diederich-Remmert [9, p. 132, Theorem 60]) all the elements

represent just one holomorphic function. The consequence is that

it makes no sense to work with holomorphic elements. Therefore, we

have to use nonholomorphic elements.

Very simple nonholomorphic functions are polynomials in the

complex variable z and its complex conjugate i7 These func-

tions have the form

n
p(z, ) = j- ~k (1.1)

j., =O ajk Z Z ajk "

The number

ap= max {j + k:a j,k  0} (1.2)
j,k=0,1,... ,n

will be called the degtee of p . If ap = 1 we shall say that

p is tinear, if @p = 2 we shall say that p is quadratic,

for 3p = 3,4,5 we shall use the words oubic, quaktic, quintic

respectively. .-1 )I

i _ _ , . -
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If we use the representation

z = x + iy, z = x - iy (1.3)

then

1 -1 (z- I
x = (z + Z); y = (z - Z) (1.4)

That means a function in the real variables x and y can be

transformed into a function depending on the complex variables

z and z , and vice versa.

Thus, a function u = u(z,z) may also be regarded as a

function in x and y . If u is continuously differentiable

with respect to x and y , then we have

ux = uz + u ; Uy i(u z - u z ) , (1.5)

u - iu u + iu
U =U (1.6)

z 2 z 2

If u is twice continuously differentiable, then

Au = u + u =4 u - (1.7)xx yy zz"

In the sequel we treat triangular, rectangular and paral-

lelogram meshes and meshes on circular sectors. The elements

defined on those meshes will be as simple as possible. Besides

the aspects known from the theory of finite elements, as, for
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instance, interpolating properties, computational aspects,

and an error analysis, there are new aspects which can be

summarized under the word mapping pAoperties of the newly

defined complex planar splines. These new aspects concern

the following questions, among others:

(I) How close are complex planar splines to comformality?

(II) Are complex planar splines quasiconformal?

(III) Are complex planar splines open mappings?

(Iv) Is the boundary maximum principle valid for complex

planar splines?

In some cases these questions apply also to the difference

= f - v between a certain function f and a complex planar

spline v

Since the interpolating formulae for the complex case look

different than the corresponding formulae for the real case, we

believe that it is reasonable to state these formulae here. We

shall see that the complex interpolation and L2-approximation

problem reduce to two real problems such that no new error analy-

sis is needed. But the situation changes for instance for the

uniform approximation problem.

Besides the approximation of functions by complex planar

splines, still another application seems possible, namely solving

complex differential equations like Beltrami's equation

f- = Vf + Vf (1.8)
Z z z
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without splitting it into real and imaginary parts. The

equation (1.8) was recently treated numerically by Weisel

r161 for the case V = 0 by solving the corresponding real

system with finite element techniques. A systematic treat-

ment of (1.8) can be found in Wendland [17]. Furthermore,

for the conformal mapping problem there also exists an invest-

igation by Bosshard [8] on the use of finite elements again by

treating corresponding real problems. Also in this case a

direct attack seems possible which then avoids the computation

of the conjugate function to the computed real part of the mapping.

Still another application is the automatic construction of

meshes with desired behavior. In many cases, for instance, it

is desirable to construct meshes which concentrate at a certain

point. An example is shown in Figure 1, where the range of an

interpolating complex planar spline is sketched.

Figure 1

These applications provide motivation for our study of com-

plex planar splines and their basic properties.

2. LINEAR COMPLEX PLANAR SPLINES ON TRIANGULAR MESHES

A triangle A is defined by its three vertices PIP2,P3

which are supposed to be three pairwise different complex numbers
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not located on a straight line. The three edges of A will
be designated by P1 P 2 P P 2 P3 , P 3 P1 where the order of

the indices is irrelevant.

We first investigate one single element on a triangle A

We will use a linear element of the form

p(z,z) = a + bz + cz ; a,b,c E . (2.1)

For simplicity of the notation we shall write p(z) instead

of p(z,z)

It is clear that the interpolation problem p(Pj) j,

j = 1,2,3 has a unique solution for any three complex numbers

Ic2, . This solution is given by

a = ( 1 (P2 P - 2P 3)+ 12 P 3 - P 1T3 ) + 3 (P1 2 - P2 ))/6 , (2.2)

b = ( 1 (P2 - P3 ) + C 2 (P 3 - P 1 ) + ;3 (PI- P2 ))/6 , (2.3)

c = (l(P3 - P2 ) + 2 (P 1 - P3 ) + 3 (P2 - Pl))/6 , (2.4)

where

6 = 2i Im (PI2 + P 2V3 + P3I) P (2.5)2 23 3'P1

(Note that Re(z) and Im(z) mean the real and imaginary parts

of z respectively.)

It is easy to see that any three points zz 21z3 E form

a triangle if and only if

--1. . . .. . . . . . . .. . . . .L . . . . .
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Im(z 1 2 + z2z + z3 z) 0 (2.6)

and this property is invariant under translation.

For the standard triangle P 1  0 , P 2 = 1,P = i the

above formulae reduce to

a = 4 1  (2.7)

b (= (i - 1) + 2 -i 3 (2.8)

c (-Cl(i + 1) + C2 + iC3 ) (2.9)

with

6 = -2i (2.10)

For any given triangle with vertices PI,P2 ,P3 we can

construct three special elements pj. j = 1,2,3 by solving

Pj(Pk) = 6jk " j,k = 1,2,3 , where 6jk is the common Kronecker

symbol. These elements are usually called form elementS. They

have the property that the general interpolating element p with

p(P.) = 0j , j = 1,2,3 can be written in the simple form

3
P = j Pj (2.11)j=l

Their importance lies in the fact that they can be used to

construct a basis for the linear space of all complex planar

splines, as will be seen later.
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Definition 2.1. A linear element p = a + bz + cz for any

a,b,c E is called degenerate if Ibi = Icl

Let R be a region in 2 and f R- a mapping

which has continuous partial derivatives f and f- . If
z z

f is quasiconformal, the numbers

Ifz(Z)I + If (z)!I
d(z) = - (2.12)

Ifz(Z)I If-(z)j

and

f-(z)
=(z) - z (2.13)

f (z)
z

are called dilatation quotient and complex dilatation at the

point z respectively (Lehto-Virtanen [10, p. 52 & 191]). We

always have d(z) >_ 1 . In case d(z) = 1 , z could be called

a conformal point. If d(z) = 1 for all z , then f is con-

formal.

The following theorem gives some properties of a linear

element p

Theorem 2.1. A linear element p(z) = a + bz + cz , a,b,c E

has the follcwing properties:

1. If ZlZ 2 E

then

p((l - )z1  + Xz2 ) = ( - )p(zl) + p(z 2 ) (2.14)

for all X EIR
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2. The range of p applied to a triangle is again a triangle

if and only if p is non-degenerate.

3. p is an orientation preserving homeomorphism if and

only if ibI > Icl .

4. p is an open mapping if and only if p is nondegenerate.

5. p is quasiconformal if and only if IbI > Icl . In that

case its dilatation is a constant given by

Io,
d = 1bI + jcj (2.15)

and the complex dilatation is a constant given by

(2.16)

6. If we apply p to an angle T 0 < T < , the angle

T is distorted by the angle

2
arctan ci + Re(bc) - Im(bc) tan T (2.17)-- 1 2 )2Im(bc) + c2 - )I tan T - b + cl cot T

Proof: Properties 1-5 are immediate. The proof of property 6

follows by going through standard computations.

We now come to another important application of Theorem 2.1.

Definition 2.2. Two triangles A,, A2 are called neiqhb4s2 or

neighboing if they share a common edge.
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Figure 2

Theorem 2.2. Let AI,A 2 be two neighboring triangles with

the common edge P 1 (see Figure 2). Further let p.

be a linear element in A. , j = 1,2 If

pl(Pj) = p 2 (Pj) , j = 1,2 (2.18)

then

pl(z) = p 2 (z) for all z E P 1 P 2 , and consequently

p(z) pl(z) for z EA (2.19)

p2 (z) for z E A2

is continuous on A1 u A2

Proof. Follows directly from Theorem 2.1 (property 1).

Now if we subdivide a region into triangular meshes and

define a linear element in each mesh we obtain a complex planar

spline if we impose condition (2.18) for each pair of neighbor-

ing triangles. In the triangulation, however, we do not allow

that a vertex of any triangle is interior to any other edge.

More specifically the triangulation has to be pitpe t (Prenter

ill, p. 1271).
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The form elements introduced earlier are used to construct

a basis for the linear space V of all complex planar splines.

Let R be a region in 4 , subdivided into finitely many tri-

angles and PI. P 2 '.... PN its grid points. A complex planar

spline associated with the gridpoint P. and defined by
3

1- 1 for z = P.

v .(z) = j I

0 for z E {P l P 2 ... PN } - P j = 1,...,N

will be called a (gtobat) 6o'm Aunction. It can be constructed

piecewise from the (local) form elements already known. Assume

that TI,T2...., T are the triangles which have P. as a common

vertex. Then combine those form elements defined in

TT ... , T which have the value one at P. and zero at the
2 k.

two other vertices with the zero elements on all other triangles.

Clearly V = <vlv 2 ,..,V N
>

A complex planar spline in general does not represent an

open mapping even if all elements are not degenerate. To see

this we define a complex planar spline on the square

Q = {z : 0 5 Re z 5 1 , 0 Im z S 1} , (2.20)

which we divide into two triangles

A 1  r z Q : Re z + Im z ' i} , (2.21)

A iz c Q : Re z + Im z > ]}, (2.22)
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and define

(z for z E Al

v = (2.23)

1 + i - iz for z E A2

which is then a complex planar spline on Q

However, the range of Q under v is A1 such that the

range of any open set in Q containing parts of the diagonal

of Q is not open.

But we have the following Lemma (where proof is obvious).

Lemma 2.1. If a complex planar spline represents a univalent

function it is an open mapping.

A consequence of this Lemma is the following.

Theorem 2.3. Let v be a complex planar spline which inter-

polates a univalent, holomorphic mapping f on the grid points

of a sufficiently fine triangular grid which is inside of the

domain of definition of f . Then v is univalent and open.

Proof. Since f is conformal, a small triangle is mapped such

that the images of the three vertices form a triangle. There-

fore, the interpolating complex planar spline maps the triangular

grid onto another triangular grid in a univalent way. The result

follows from Lemma 2.1.

Lemma 2.2. Let f be a holomorphic function in a region R and

g a holomorphic function in R = iz z c R) Define a function
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h on R b h(z) = f(z) + g(z) . z E R If h is not con-

stant, then Ihi does not admit a maximum in R

Proof: It is sufficient to show that jhi 2 has no maximum in

R If A represents the Laplace operator as defined in (1.7)

we obtain

12~ 22
AIhi 2 = 41hI2z = 4(IfzI + Igi 2 ) 1 0

But this implies that Ihi2 is subharmonic. Since h is not

constant, Ih12 does not admit a maximum in R (Ahlfors [6,

p. 2451).

Particularly a non-constant linear element p itself has

the property that it admits no maximum in the interior of the

triangle in which it is defined. This is a stronger property

than property 4 of Theorem 2.1.

Clearly, a complex planar spline is not subharmonic in gen-

eral. As an example take an interpolating spline which is 1

at one interior gridpoint and zero at the other grid points.

3. QUADRATIC COMPLEX PLANAR SPLINES ON

RECTANGULAR AND PARALLELOGRAM MESHES

First we study splines on rectangles whose sides are

parallel to the axes. Such a rectangle D (called quabta

in Physics) is defined by its four vertices P 1,P2,P31 P4 which

are to be understood as pairwise distinct complex numbers with

Im P = Im P Im P = Im P Re P = Re P Re P Re P

1  2  3  4  1 4  2 3

arranged in positive orientation.
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We first investigate one single element on a rectangle D
A quadratic element of the form

p(z) = a + bz + cz + d(z - z2) , a,b,c,d E (3.1)

will be used. That the use of this element is reasonable will

be seen in Theorem 3.1. The interpolation problem

p(Pj) = j , j = 1,2,3,4 again has a unique solution for any

four complex numbers i, 2#'3,C4 , and this is as follows:

a (116)((P 2 P f) I- (p2 P2
3 3 4  P 2

(3.2)
+(2  -2 - 2 2

1 1 3 ( 2  2) 4

b =(2/6) (-P 3 Cl + P 4 C2 - 1l 3 + P 2 t 4 ) ,(3.3)

c = (2/6)(P 3 Cl - 4 C2 + P1 3 - P2 4) (3.4)

d = (1/6) (i - (2 + C3 - 4) (3.5)

where

6 4(P 2 - P1 ) (P 3 - P 2 ) (3.6)
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In the case of quadratic complex planar splines on rectan-

gular meshes, we have the following analogue of Theorem 2.1.

Theorem 3.1. Let P,Q any two distinct points of 4 and

p a quadratic element as defined in (3.1) with d $ 0

Then

p((l - X)P + XQ) = (1 - X)p(p) + Xp(Q) for all X E [0,1] (3.7)

if and only if the straight line through P and Q is parallel

to the x- or y- axis.

Proof. Set z,= (1 - X)P + XQ Then because of Theorem 2.1

and d 0 , (3.7) is equivalent to

2 -22 22 2

z- z = ( - (P2 - p2 ) + -(Q _5 for all X E [0,1]. (3.8)

Let P x + iy and Q = u + iv . After routine computations

we deduce from (3.8) that x(v - y) = u(v - y) which yields the

assertion.

Definition 3.1. Two rectangles will be called neighbors or

neltghbouing if they share a common edge (Figure 3).

Figure 3
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Theorem 3.2. Let Mi' D 2 be two neighboring rectangles

whose sides are parallel to the axes, with the common edge

PIP2 (Figure 3). Let pj be a quadratic element of the form

(3.1) defined on L j i = 1,2 If

pl(P) = p2 (P) , j = 1,2 (3.g)

then

pl(z) p2(z) for all z E P P2

Consequently

pl(z) for z c f1
p(z) = (3.10)

p2 (z) for z e i 2

is continuous on El1 u Fl 2

Proof: follows directly from Theorem 3.1.

Now if we subdivide a region into rectangular meshes where

the sides of the rectangles have to be parallel to the axes

then we obtain a complex planar spline if we impose condition

(3.9) for each pair of neighboring rectangles.

Theorem 3.3. Let R be any region in 4 , f a holomorphic

function in R and p a quadratic element as defined in (3.1).
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If f - p is not constant, then If - pi does not admit a

maximum in R .

Proof: Since f - p is a sum of a holomorphic function in

z and a holomorphic function in I , Lemma 2.2 applies and

yields the desired result.

This theorem applies particularly to p itself.

More information about the quadratic element p as defined

in (3.1) can be deduced from its Jacobi determinant

= 2Ipz 2 - ~zI 2 (3.11)

(see Lehto-Virtanen [10, p. 136]) which reads here:

JWz = lb + 2dz 2 - Ic - 2dzl

J I 12 _ I cl2 + 2(dg + -c)z + 2(db + dC)z (3.12)

The set

H = {z : J(z) = 0} (3.13)

is either a straight line or a point in

Definition 3.2. The quadratic element p(z) = a + bz + c!

+ d(z2  z -2 a,b,c,d,z € is called decjcneiatc if

a= dB + ac = 0 . (3.14)

Now, H of (3.13) is a straight line in 4 if and only if p

is not degenerate. If p is degenerate then (3.14) implies

d = 0 or Ibi = Icl If p is not degenerate then the
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straight line H forms the angle a with the real axis which

is given by

tan a = Re (db + dc) 0 _ a < 7 . (3.15)
Im (db + dc)

Let us assume now that p is not degenerate. If the domain of

definition of p is any compact set S in which is located

in the half plane

H+  {z: J(z) > 0} (3.16)

then p is locally an orientation preserving homeomorphism in

S which then is also quasiconformal in S since its dilatation

quotient (see 2.12) is bounded.

In order to find out whether p is a global homeomorphism

we study the solutions of

p(z 2 ) - p(z I ) = 0 (3.17)

If we use the abbreviations

x = z2 - z l y = Z2 + z (3.18)

equation (3.17) reads

p(z 2) - p(zl) = x(b + dy) + x(c - dy) = 0 . (3.19)

From this it follows that

d(p(z 2 ) - p(zl)) + d(p(z 2 ) - p(zl)) = xo + o = 0 , (3.20)

where o was already introduced in (3.14). If we use this equa-

tion to eliminate x from (3.19) we obtain
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yc + a + IbI 2 - c12 = 0 (3.21)

in case x ; 0 . Let J(z.) > 0 , j = 1,2 . Then from 3.12

by forming J(z1 ) + J(z2) it follows that

2(Ibl2 - Ic 2 ) + 20y + 2ay > 0 , (3.22)

which contradicts (3.21).

To summarize: If p is not degenerate then it is

univalent in both half planes H+ and H- = {z : J(z) < 01

Since the domain of definition of p is a rectangle R

whose sides are parallel to the axes, one can find out whether

R c H+  just by inserting a suitable vertex into J To

explain that we distinguish four cases according to the

special location of H+  in .

Case 1 : .1 < a < 7 and H+ is a right half plane in

Case 2 : a = 0 and H+ is an upper half plane in

or

0 <a< Iand H is a left half plane in
2

HT+

Case 3 : 5 a < i and H is a left half plane in .

Case 4 : =0 and H+ is a lower half plane in ,

or
HT+

0< a < and H is a right half plane in .

The words f'et, Aight, fowei, uppvt half plane are used in the

ordinary sense.
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Theorem 3.4. Let R be a rectangle whose sides are parallel

to the axes. Call P1 the lower left, P2  the lower right,

P3  the upper right and P4  the upper left vertex of R

Further let p be a non-degenerate quadratic element (as

defined in (3.1)) on R . Then the mapping p is an orienta-

tion preserving homeomorphism and quasiconformal on R if and

only if J(P.) > 0 where j is determined by the case number

j to which H+ belongs, j E {1,2,3,4}

Proof: If we are in case j , e {1,2,3,4} , then J(P.) > 0
H+

is equivalent to R c H

If for mnemotic reasons one would like to give that theorem

a name, then "fout corner theotem" seems to be very suitable,

since all four corners of the rectangle R are involved.

Under the assumptions stated p will be an orientation

inverting homeomorphism on R if and only if J(Pk ) < 0 where

k = (j + 2)mod 4 and j is determined as before.

If a rectangle is subdivided in this way into m -n little

rectangles, then there are m -n elements having altogether

p = 4 m* n parameters. Further there are s = 3 mn - m - n - 1

continuity conditions leaving p - s = (m + 1) (n + 1) parameters

free where (m + 1) (n + 1) is also the number of gridpoints.

Now we can adjust the element (3.1) to the case where the

rectangle has any position in the plane. If one of the edges of

a given rectangle forms the angle a with the x-axis then instead

of (3.1) one has to use
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2 4ia-2p(z) = a + bz + cz + d(z - e i ) (3.23)

Since a parallelogram can be mapped by a linear transformation

Z of the type (2.1) onto a rectangle whose sides are parallel to

the axes one can also work with parallelograms.

If al, a2 E with a 1 'e2 for any X 1R , describe the

directions of the parallelogram grid, which means that the two

angles j , j = 1,2 with the real axis are given by

tan C. = Re a./Im (. ' J = 1,2 then the fore-mentioned linear

transformation X yields an element of the form

p(z) = a + bz + cz + d(a z + al Z) (a2 z + a2z) , a,b,c,d E . (3.24)

4. SPLINES ON DISKS AND CIRCULAR SECTORS

Let S be a circular sector. If we divide the radius into

k subintervals and the opening angle into k - 1 subintervals,

we obtain in total k(£ - 1) meshes of two types which we would

call rectangular and triangular meshes respectively. The tri-

angular meshes contain the origin 0 of S whereas the rectan-

gular meshes do not contain the origin (see Figure 4).

Figure 4
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It is straightforward to use polar coordinates with respect

to the origin 0 of S in this situation. Therefore for rec-

tangular meshes we use an element of the form

p(z) = p(re i ) = a + br + cp + dr , a,b,c,d E (4.1)

Let PI,P2,P3,P 4 be the vertices of one specific rectangular

mesh in positive orientation such that = arg P1 = arg P2 F

2 = arg P3 = arg P4 ' r1 = IP1 1 = IP 4 1 r2 = IP21 = IP3 1

(see Figure 5.)

Then the solution of the interpolation problem

p(P.) = E , , j = 1,2,3,4 (4.2)

is given by

a = (r 2 2 1 - r1 2 2 + rl 1 3 - r 2 1 4)/6 (4.3)

b = (- 2Ci + 2C2 - il3 + #i 4/6, (4.4)

c = (-r 2 c1 + rl 2 - r l 3 + r 2 4 )/6 , (4.5)

and

d = i- 2 + 3 - 4 )/5 , (4.6)

where

1 - rl)( - i (4.7)

L



24.

Figure 5

Now assume that O,P,Q are the vertices of a triangular

mesh in positive orientation where 0 is the origin of the

sector S (See Figure 5). In order to find out what type of

element to use here, we study the interpolation problem for

a rectangular mesh where P1 - O , P 4  0 0 and i = C4 ' such

that IP1 1 = IP41 and arg P1 = arg P2 , arg P4 = arg P 3

After some computation we find c 0 0 in (4.1). This

means that we have to use an element of the form

p(z) = a + r + yr , , e (4.8)

If we assume that P and Q have the polar coordinates

(r1,l) and (r2 ,42 ) respectively, then the interpolation

problem

p(O) = rI ' P(P) =  2 ' P(Q) = 3 ' i' C2' C3 (4.9)

has the solution

= (4.10)

= -( 2 - ) i + 2 2 - i 3) / 6 (4 .11 )
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and

Y = (-C2 + %3)/ (4.12)

where

= i/rl(j2 - 1) (4.13)

Theorem 4.1. Let S be a circular sector subdivided into

meshes as described above and m. , j = 1,2 two neighboring
J

meshes sharing the common edge E = P2 Let pj be an

element defined on m. where p. has the form (4.1) if m.
3J - J

is a rectangular mesh or it has the form (4.8) if m. is a
___ ___ ___ __ ___ ___ _- J

triangular mesh, j = 1,2

if
pl(Pj) = p2 (Pj) , j = 1,2 (4.14)

then

p1 (z) p2 (z) for all z E E (4.15)

Consequently,

pl(z) for z c m1

p(z) = (4.16)

p 2 (z) for z E M2

is continuous on ml u '2 ,

Proof: The elements(4.1) on :ectangular meshes as well as the

elements (4.8) on triangular meshes are linear on the edges of

their respective domain of definition.
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The element p introduced in (4.1) has the same form as

the element p defined in (3.1) and used for ordinary rectangles.

In order to see this, one has only to identify Re z with

r and Im z with The consequence is that no particular

analysis besides the analysis for elements on ordinary rectangles

is required.

We end this section with the computation of the number of

free parameters in a complex planar spline on a circular sector.

The k( - 1) meshes distribute in (k - 1) ( - 1) rec-

tangular and Z - 1 triangular meshes. In order to make a piece-

wise defined function continuous we have to impose Z(3k - 1) - 4k

conditions. The number of parameters is (, - 1) (4k - 1) leaving

9,k + 1 parameters free which is also the number of grid points.

5. LEAST SQUARE APPROXIMATION AND INTERPOLATION

WITH COMPLEX PLANAR SPLINES

If we want to approximate a complex valued function by com-

plex planar splines of a certain type, we end up with minimizing

a real valued functional defined in N N (N.
To treat such a problem it is not necessary to rewrite it

in real form. Let us assume that we have to handle the problem

fla) = min N IR (5.1)

where 4 may also explicitly depend on a If ¢ has con-

tinuous partial derivaties with respect to all components of
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a , then

= 0 , j = 1,2,...,N , a = (al,a 2 .. .,an) (5.2)

is a necessary condition for a being a minimum of ¢ This

follows immediately from (1.5) and (1.6)

If g,h N are complex-valued functions possessing

continuous partial derivatives with respect to a and a

then

(9)a =  a (g)a = a (5.3)

(gh) = ga h + gh (5.4)

a aaa (5 4)

2 (g;T) = ga + 92 (5.5)

and if g does not depend on a explicitly, then

7a 2 = ga. (5.6)

The least square problem can be treated along the lines

of Schultz [14, Ch. 61 as follows.

Let R be a compact set in subdividable in meshes

of the discussed form, f E L2 (R) and V the linear space of

all complex planar splines where V = <vlv2:.. . ,VN> and the

v. are the global form functions defined earlier , j = 1,2,... ,NJ

It should be noticed that the form functions are by definition

real.

The problem here is to minimize
4
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N 2 . N

p(a) =If(z) - N Va j 2dxdy , a = (al,a 2 ... aN) (5.7)

R j=1

Using (5.2) to (5.7), we obtain

N vjv k  )dxdy 0

a (a) =R ( k V Vk - v.d =

which reduces to the linear system

Ca = r (5.0)

where

C = (cjk) = TVR vk dxdy , j, k = 1,2,...,N , (5.9)

R

r = (r.) = Jf v. dxdy , j 1,2,...,N (5.10)
R

Since C is a real matrix, the system (5.8) can be parti-

tioned into the two real systems,

C Re a = Re r , C Ima = Im r , (5.11)

where Re a is the vector of the real parts of a ; analogous

meanings apply to Re r , Im a , and Im r

Clearly (5.8) has a unique solution since is strictly

convex.

Let Q be the best least square approximation of f The

error analysis can be directly taken from the real case (e.g.

Schultz [14, Ch. 6]) since
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f- vf = IR e (f - ) + i Im (f - v)II

(5.12)

!iRe f - Re V fl + HIm f - Is $ fl

This means that the order of convergence is the same as

in the real case, but the convergence constants have to be

doubled, provided, of course, that Re f and Im f are of the

same smoothness.

An interpolation problem

V(zk) = f(zk) , k = 1,2,...,K (5.13)

where v is a complex planar spline, f a given function, and

zk , k = 1,2,...,K given grid points may be as well partitioned

into two real problems by splitting equation (5.13) into real

and imaginary parts. The above remarks on the error analysis

therefore apply also here.

6. A NUMERICAL EXAMPLE

We subdivide the standard triangle 0,l,i in the usual way

by dividing its two smaller sides into 1/h = 2k k = 0,1,...5

pieces of equal length and divided the resulting little squares

of side length h diagonally by parallels through the hypothenuse

of the standard triangle. We obtained a complex planar spline

vh by interpolating the exp. itial function at the grid points

of that triangle.

In the following Table 1 we list the computed values
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eh = Ilexp - vh I , the corresponding numerical convergence
order ch of eh , the maximal dilataion quotient dh over

all meshes (compare Formula (2.15)), and the corresponding

convergence order c h of dh

Table 1: Spline interpolating the exponential function

on standard triangle.

h e h ch dh ch

1 0.3730 1.54 2.229 1.45

1/2 0.1285 1.79 1.451 1.19

1/4 0.0372 1.90 1.198 1.09

1/8 0.00996 1.95 1.093 1.05
1/16 0.00257 1.98 1.045 1.03

1/32 0.000653 1.022

The fact that eh approaches zero with order two is

of course known (Schultz [14, Ch. 21). According to our

computation the maximal dilatation approaches one with order

one. The number dh - 1 could be called deviation from con-Ph

formality. To the best of our knowledge, neither

numerical values for the dilatation d h nor theoretical

investigations on the behavior of dh as h 0 exist in

literature.
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